top of page
Rebecca Anderson

Blog: Machine Learning in Finance: How to Get Started

Updated: Nov 17, 2020

(Written for Prophix)

Machine learning has seemingly unlimited potential to make your Office of Finance more efficient and effective. But it can be daunting to consider making the changes required to take full advantage of the technology.


“The prospect of artificial intelligence is going to be very intimidating on multiple levels,” Jack McCullough, President of CFO Leadership Council, told us in a recent interview. “While the promise of AI is amazing, we are still in its infancy to a degree. … [But] embrace it as a positive! It’s going to improve your company. It’s going to fundamentally improve the very quality of life for people all over the world. And that’s a fact.”

But the question on most Finance leaders’ minds is: Where do I start? The good news is that the application of machine learning in Finance isn’t all or nothing. The key is to start with a project that is both low-risk and high-impact. This allows you to secure an easy win and build from there.


With that said, here is a simple roadmap for adding machine learning into your finance processes, along with current applications.


Step 1: Start with Automation

Machines love routine tasks. People? Not so much. Finance automation has the dual benefit of being the easiest machine learning for Finance groups to implement and the one with the most tangible results.


The first step is identifying a project that is critical, but also time-consuming, repetitive, and data-dependent. Of course, for the automation to yield excellent results, the input data and the data pipeline need to be in good shape too. So, make sure that data is sanitized and well-structured, and that relevant parties are trained on on data management and hygiene before initiating any project.


The following functions are prime targets for machine learning. By automating these common tasks through a single platform, organizations should experience a solid win for machine learning.


Procure-to-pay (P2P): An automated P2P process can provide Finance leaders improved high-level visibility on organizational spend as well as the day-to-day minutia of invoice and PO status, arming them with with facts they need for timely accruals and query resolutions. Typical steps in an automated P2P process include requisition, invoice capture, invoice matching, invoice approval, and ERP integration.


Order-to-cash: In the traditional order-to-cash process, different business functions use their own systems and data, resulting in inefficient processes and imperfect data. By automating the order-to-cash process, Finance groups can expect increased awareness of risk ratings, quicker turn on financial documents, and more accurate invoicing—all of which improve cash flow and efficiency. In fact, data from the IBM Institute for Business Value suggests that improving the order-to-cash practices can lead to a 83% improvement in performance.


Record-to-report (R2R): Automating the R2R process can deliver a faster financial close, improve business compliance, help ensure the integrity of financial reporting, and provide continuous monitoring of KPIs and flash reporting. Milestones in an integrated R2R process include: assimilation of data from sub-ledger entries, integration of data into the general ledger, aggregation of the data, and automated reporting.


Step 2: Ramp up with Augmentation

After offloading routine tasks to automation, the question becomes: how can machine learning help Finance Organizations make better decisions. That’s the basis of augmented intelligence and it’s already playing a key role in many Finance Organizations through:


Fraud Reduction and Security: Finance has long depended on the processing power of computers to identify anomalous behavior. The difference is that while previous systems were the product of a complex and robust sets of rules, newer systems actively learn and adapt based on perceived security risk. As a result, possible fraud and security issues are flagged sooner. John Colthart, VP of Growth at MindBridge Ai, explains this relationship further. “AI catches the errors and the anomalies, the potential for issues that an auditor, an accountant or financial professional would then investigate. When they do that investigation with the right information from the AI, they’re able to be more specific in their questioning, and they’re going to be able to find intent. The minute they find intent, they’re going to be able to claim that as something fraudulent.”


Data Management: Augmented AI helps overcome challenges with internal data management, bringing together disparate data and highlighting insights to shape business decisions. Another application for augmented AI is sorting through hundreds of thousands of emails or form submissions, determining priority communications and the sender’s intent.


Customer Service: Using augmented AI can help finance organizations remain customer-focused as consumer expectations for service and responsiveness increase. For customer-facing Finance Groups, chatbots and conversational interfaces are seen as having huge potential. Some organizations are also utilizing augmented robo-advisors who can provide detailed answers about savings and loans.



Step 3: Bring in AI for Analytics & Prediction

The next level of machine learning is leveraging computer processing power to analyze data, quickly make assumptions, perform scenario analysis, and predict outcomes. AI systems can review up to 800 million pages of text per second and even ingest new regulations as they are created, ensuring that their assumptions are always spot-on.


Current applications of data-driven decision making include hedge fund management and algorithmic trading. The effects of machine learning taking on advisory role can be seen in the transformation of the underwriting process. However, much of the potential for AI-driven predictive analysis is untapped and Finance Leaders can expect other developments in the future.


Getting Started with Machine Learning

Machine learning has the power to transform the business of Finance by automating routine tasks, augmenting human decision-making, and accurately predicting outcomes. But, tapping into the power of machine learning is an ongoing process. The important thing is to start.


For more about the possibilities of machine learning and AI in Finance visit our latest resource which highlights insights from global finance leaders.

3 views0 comments

Comments


Post: Blog2_Post
bottom of page